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ABSTRACT

Optical coherence tomography (OCT) is a safe and non-invasive imaging tech-

nique providing high axial resolution. A spectral-domain OCT scanner capable of

acquiring volumetric data of the retina is becoming an increasingly important modal-

ity in ophthalmology for the diagnosis and management of a variety of retinal diseases

such as glaucoma, diabetic retinopathy and age related macular degeneration (AMD)

which are major causes of a loss of vision. To analyze and track these ocular dis-

eases, developments of the automated methods for detecting intraretinal layers, optic

discs and retinal blood vessels from spectral-domain OCT scans are highly required

recently.

The major contributions of this thesis include: 1) developing a fast method that

can automatically segment ten intraretinal layers in the spectral-domain macular

OCT scan for the layer thickness analysis, 2) developing a method that can auto-

matically segment the optic disc cup and neuroretinal rim in the spectral-domain

OCT scan centered at the optic nerve head (ONH) to measure the cup-to-disc ratio,

an important structural indicator for the progression of glaucoma, and 3) develop-

ing a method that can automatically segment the 3-D retinal blood vessels in the

spectral-domain ONH-centered OCT scan to extract 3-D features of the vessels for

the diagnosis of retinal vascular diseases.



www.manaraa.com

2

Abstract Approved:

Thesis Supervisor

Title and Department

Date

Thesis Supervisor

Title and Department

Date



www.manaraa.com

SEGMENTATIONS OF THE INTRARETINAL SURFACES, OPTIC DISC AND

RETINAL BLOOD VESSELS IN 3D-OCT SCANS

by

Kyung Moo Lee

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy degree

in Biomedical Engineering
in the Graduate College of

The University of Iowa

May 2009

Thesis Supervisors: Professor Milan Sonka
Associate Professor Michael D. Abràmoff
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CHAPTER 1
INTRODUCTION

Optical coherence tomography (OCT) is a safe and non-invasive imaging technique

providing high axial resolution. OCT scanners are becoming increasingly important

modalities in especially ophthalmology. Unlike the time-domain OCT scanner, the

spectral-domain OCT scanner recently introduced can acquire volumetric data of

the retina. The OCT scanners are being used to diagnose and manage a variety

of retinal diseases such as glaucoma, diabetic retinopathy and age related macular

degeneration (AMD) which are major causes of a loss of vision [33]. For example, the

thickness variation of a retinal nerve fiber layer (RNFL) is an important indicator

to represent glaucomatous changes [16]. The ratio of the optic disc cup and rim

surfaces (cup-to-disc ratio) in the spectral-domain OCT scan can also be used to

determine the progression of glaucoma [1]. For another example, 3-D parameters of

the retinal blood vessels may play a role in diabetic retinopathy assessment [32, 43].

Developments of the automated methods for detecting the RNFL, optic disc and

retinal blood vessels from spectral-domain OCT scans are of paramount importance

to help analyze, diagnose and manage these ocular diseases.

1.1 Specific aims

In particular, the specific aims for this thesis are as follows:

• Aim 1: Develop and validate a fast method that can automatically segment

eleven retinal surfaces for ten intraretinal layers in the spectral-domain macular

OCT scan.

• Aim 2: Develop and validate a shape-preserving method that can automatically

segment the optic disc cup and neuroretinal rim in the spectral-domain OCT

scan centered at the optic nerve head (ONH).

• Aim 3: Develop and validate a method that can automatically segment the
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3-D retinal blood vessels in the spectral-domain ONH-centered OCT scan.

1.2 Thesis overview

This thesis consists of seven chapters as follows:

• Chapter 2 provides background, including intraretinal layers, retinal diseases,

OCT imaging and a 3-D graph search method. In addition, it includes prior

approaches and motivations for the segmentations of the intraretinal layers,

optic discs and retinal blood vessels in spectral-domain OCT scans.

• Chapter 3 provides the methods and validation for the segmentation of the

intraretinal layers in spectral-domain macular OCT scans.

• Chapter 4 provides the methods and validation for the segmentation of the optic

discs in spectral-domain ONH-centered OCT scans

• Chapter 5 provides the methods and validation for the segmentation of the 3-D

retinal blood vessels in spectral-domain ONH-centered OCT scans.

• Chapter 6 provides a general discussion and future directions.

• Chapter 7 provides the conclusions of this thesis.
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CHAPTER 2
BACKGROUND AND SIGNIFICANCE

2.1 Intraretinal layers

The retina is a light sensitive part consisting of several layers at the back of the eye

(Fig. 2.1). The intraretinal layers include internal limiting membrane (ILM)/nerve

fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear

layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), outer limiting

membrane (OLM), inner segment layer (ISL), connecting cilia (CL), outer segment

layer (OSL), Verhoeff’s membrane (VM), retinal pigment epithelium (RPE)/Bruch’s

membrane (BM) and other layers (Fig. 2.2) [4].

Light comes in through the inner layers [25, 41]. The rods and cones in the ISL

and OSL and their cell bodies in the ONL form the photoreceptors to convert a light

signal into a neural signal. The rods are responsible for low-light black-and-white

vision and distributed throughout the retina except the fovea and blind spot [21].

Rod density is greater in the peripheral retina than in the central retina. The cones

are responsible for color vision. There are three types of cones, maximally sensitive

to long-wavelength, medium-wavelength and short-wavelength light which are often

referred to as red, green, and blue, respectively. The cones are mostly concentrated

around the fovea. In the OPL, photoreceptor axons contact the dendrites of bipolar

cells and horizontal cells which are interneurons aiding in signal processing. The bipo-

lar cells in the INL transmit the neural signal from the photoreceptors and horizontal

cells to their axons. In the IPL, bipolar axons contact ganglion cell dendrites and

amacrine cells, another class of interneurons. The ganglion cells in the GCL transmit

the neural signal through the optic nerve to the brain.
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Figure 2.1: Anatomy of the eye and optic nerve head. (copied with permission
from [9])

2.2 Retinal diseases

2.2.1 Glaucoma

Glaucoma is the second leading cause of blindness worldwide [37]. It is character-

ized by gradual cupping of the optic nerve and visual field loss [42]. An optic nerve

head (ONH) is the location connecting the optic nerve and retina (Fig. 2.1). An optic

disc, the 2-D structure of the ONH, consists of an optic disc cup and neuroretinal

rim. The optic cup is the excavation of nerve fibers in the center, and the neuroretinal

rim is formed by nerve fibers and glial cells. Glaucomatous changes in the ONH are

related to a decreased number of the nerve fibers. While the size of the optic cup

increases, that of the neuroretinal rim decreases (Fig. 2.3) [9]. The ratio of the optic

cup and neuroretinal rim surfaces (cup-to-disc ratio) is an important structural indi-

cator for assessing the presence of glaucoma. To quantify this ratio, planimetry has

been commonly performed by glaucoma specialists from stereo color photographs [26].

Fig. 2.4(b) shows a simulated view which a glaucoma patient might see.
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(a)

(b)

Figure 2.2: Intraretinal layers. (a) Histology. (Image courtesy of School of Medicine,
The Southern Illinois University.) (b) Cross-sectional image (X-Z image) of the
spectral-domain macular OCT scan around the fovea. Each intraretinal layer is dis-
tinguished by voxel intensity differences from top to bottom of the OCT scan. Light
enters from the top of the image.
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(a) (b)

Figure 2.3: Glaucomatous changes of the ONH. (a) Normal ONH. (b) ONH with
glaucomatous changes. (copied with permission from [9])

2.2.2 Diabetic retinopathy

Diabetic retinopathy is the damage to the retina caused by complications of di-

abetes mellitus, and the second most common cause of blindness and visual loss in

the United States [24]. The blindness and visual loss can be prevented by annual

screening and early diagnosis. The primary cause of the visual loss is diabetic mac-

ular edema (DME) which is a breakdown of the blood-retinal barrier due to leakage

of dilated hyperpermeable capillaries and microaneurysms (Fig. 2.5) [12]. Visual de-

terioration is related to the degree of the DME, and the visual loss occurs when the

macular edema involves the visual center. Fig. 2.4(c) shows a simulated view which

a diabetic retinopathy patient might see. It is obvious that the DME affects macular

structure in both short and long term.

2.3 Optical coherence tomography

2.3.1 Time-domain optical coherence tomography

Time-domain optical coherence tomography (OCT) was introduced by several

groups in the early 1990s [8,15,23,38]. Fig. 2.6(a) shows a diagram about the imaging
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(a)

(b) (c)

Figure 2.4: Simulated views. (a) Normal view. (b) View of a glaucoma patient. (c)
View of a diabetic retinopathy patient. (Images courtesy of National Eye Institute,
National Institutes of Health.)
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Figure 2.5: Color fundus photographs of the normal retina and abnormal retina in
diabetic retinopathy [43].

(a) (b)

Figure 2.6: Diagrams of time-domain OCT and spectral-domain OCT systems. (a)
Time-domain OCT. (b) Spectral-domain OCT.
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principle of the time-domain OCT. Single wavelength light in the time-domain OCT

system is splitted into the arm including a sample (i.e. retina) to be tested and the

arm including a moving reference mirror. The combination of reflected lights from

the sample and reference mirror causes an interference pattern when both arms have

travelled in the same or similar optical distance. The envelop of the interference

pattern changes depending on pathlength difference, and the peak of this envelope

represents the location of the sample, with an amplitude dependent on the reflectivity

of the sample. The amplitude forms a pixel or voxel intensity at the location of the

sample. The interfered light is acquired by the interferometer including a time gate

and collimator. A small portion of the light that reflects from the sample is collected

since most light is not reflected but scattered. The scattered light has lost its original

direction and does not contribute to forming an image. The time gate and collimator

are used to filter out the scattered light. Although using the time gate and collimator,

scattered light is detected which causes speckle noise in OCT images.

A depth scan (A-scan) is obtained by adjusting the reference mirror, and the

profile of the interfered light is imaged. A cross-sectional image (B-scan) is achieved

by laterally combining a series of A-scans.

The imaging principle of the time-domain OCT is analogous to that of ultrasound

except the source. While the time-domain OCT system uses light, the ultrasound

system uses sound. Although the imaging depth of the OCT system is shallow (around

2 mm) compared with the ultrasound system, it provides much higher axial resolution

of a few microns.

The scan speed of the time-domain OCT scanner such as a Stratus OCT (Carl

Zeiss Meditec, Inc., Dublin, CA, USA) machine is 400 A-scans/sec. The scan speed

is limited by the speed at which the reference mirror can be moved. Therefore, the

time-domain OCT scanner can acquire only several cross-sectional images (typically

6 × 128 × 1024 voxels). The slow scan speed causes a bad effect on image quality
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(a) (b)

Figure 2.7: Image quality of time-domain and spectral-domain OCTs. (a) Time-
domain OCT image from Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA, USA).
(b) Spectral-domain OCT image from Cirrus HD-OCT (Carl Zeiss Meditec, Inc.,
Dublin, CA, USA).

such as eye movement artifacts (Fig. 2.7(a)). The voxel size is 30 × 30 × 2 μm, the

voxel depth is 8 bits in grayscale, and the acquisition time for each scan consisting of

6 × 128 × 1024 voxels is 1.92 seconds.

2.3.2 Spectral-domain optical coherence tomography

With the introduction of spectral-domain OCT scanners [14,38], imaging of the 3-

D structure is now possible. Fig. 2.6(b) shows a diagram about the imaging principle

of the spectral-domain OCT. The spectral-domain OCT system uses a broadband

source whose center wavelength is between 800 and 1000 nm [13]. The light interfered

from the tested sample and reference mirror is acquired in parallel by a spectrometer.

An A-scan can be calculated by a Fourier transform from the spectrum of the acquired

light.

The scan speed of the spectral-domain OCT scanner such as a Cirrus HD-OCT

(Carl Zeiss Meditec, Inc., Dublin, CA, USA) machine is 27,000 A-scans/sec. The

Cirrus HD-OCT scanner can acquire a retinal volume whose dimension is typically



www.manaraa.com

11

200 × 200 × 1024 voxels covering 6 × 6 × 2 mm3. The voxel size is 30 × 30 × 2 μm,

the voxel depth is 8 bits in grayscale, and the acquisition time for each volumetric

scan consisting of 200 × 200 × 1024 voxels is 1.48 seconds. The image quality of

the spectral-domain OCT is much better than that of the time-domain OCT (Fig.

2.7(b)).

The spectral-domain OCT scanner can provide true 3-D views of the retinal struc-

ture. Two kinds of OCT scans, the scan centered at the fovea (macular scan) related

to central vision and the scan centered at the optic nerve head (ONH-centered scan)

related to peripheral vision, are mainly acquired to examine patients’ eyes (Fig. 2.8).

2.4 3-D graph search

Li et al. had developed a 3-D/4-D graph-based optimal surface detection method

which can detect multiple interacting surfaces simultaneously [30, 45]. A weighted

graph G = (V, E) is composed of a node set V and an arc set E. The nodes v ∈ V

correspond to image pixels (or voxels) and arcs < vi, vj >∈ E connect the nodes vi,

vj . Every arc < vi, vj >∈ E has a cost (or weight) which represents some measure

of preference that the corresponding pixels belong to the object of interest. In a

directed graph (or digraph), the arcs < vi, vj > and < vj , vi > (i �= j) are different,

and they have their own costs. In a directed arc < vi, vj >, vi is a successor of

vj . A sequence of consecutive directed arcs < v0, v1 >, < v1, v2 >, · · · , < vk−1, vk >

creates a directed path (or dipath) from v0 to vk. There are three types of arcs

to connect the nodes vi, vj : intracolumn arc, intercolumn arc, and intersurface arc.

Let’s assume that I(x,y, z) is a volumetric image, and Col(x, y) is a node subset

{V (x, y, z)|z ∈ z}. For intracolumn arcs (Ea), along each column Col(x, y), every

node V (x, y, z)(z > 0) has a directed arc to the node V (x, y, z − 1). For intercolumn

arcs (Er), along the x-direction and for any x ∈ x, a directed arc is constructed from

each node V (x, y, z) ∈ Col(x, y) to node V (x + 1, y, max(0, z −Δx)) ∈ Col(x + 1, y),

where Δx is the smoothness constraint in the x-axis. For intersurface arcs (Es), for
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 2.8: Spectral-domain volumetric OCT scans of the retina. (a) Color fundus
photograph of the retina. The green square shows the position of the scan centered
at the fovea (macular scan), and the blue square represents the position of the scan
centered at the ONH (ONH-centered scan). (b) X-Y image of the macular scan. (c)
X-Z image of the macular scan corresponding to the green line in image (b). (d) Y-Z
image of the macular scan corresponding to the red line in image (b). (e) X-Y image
of the ONH-centered scan. (f) X-Z image of the ONH-centered scan corresponding to
the green line in image (e). (g) Y-Z image of the ONH-centered scan corresponding
to the red line in image (e).
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Figure 2.9: Graph construction for the detection of double surfaces.

any node V1(x, y, z) in Col1(x, y) with z ≥ δu, a directed arc connecting V1(x, y, z)

to V2(x, y, z − δu) is constructed. Also, for each node V2(x, y, z) in Col2(x, y) with

z < Z − δl, a directed arc connecting V2(x, y, z) to V1(x, y, z + δl) is created. δu

and δl are the maximum and minimum surface separation constraints, respectively

(Figs. 2.9, 2.10). Segmentation of the optimal surfaces is formulated as computing

a minimum closed set in the 3-D geometric graph constructed from cost functions.

This can be solved by computing the minimum s−t cut of the graph with a low-order

polynomial time complexity.

2.5 Segmentation of the intraretinal layers in 3-D macular OCT scans

2.5.1 Prior approaches

Several research on intraretinal layer segmentation of both time-domain and spectral-

domain macular OCT scans has been previously performed.

Fuller et al. proposed a semi-automatic segmentation method using a support

vector machine (SVM) trained with OCT voxel intensities marked by a user to detect
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Figure 2.10: Detection of the double surfaces by computing the minimum s − t cut
of the graph.
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2 retinal surfaces in spectral-domain macular scans [17].

Fernández et al. introduced both automatic and semi-automatic segmentation

methods using texture analysis by means of the structure tensor combined with com-

plex diffusion filtering. The automatic and semi-automatic methods detected 7 and

10 retinal boundaries in time-domain macular scans, respectively. However, the seg-

mentation results which they showed are not visually accurate around the fovea, and

they did not represent quantitative segmentation errors [16].

Garvin detected 7 retinal surfaces in spectral-domain macular scans using a 3-D

graph search approach with the incorporation of regional information and varying

constraints. Although her method can detect optimal retinal surfaces with respect

to her cost functions, it requires long processing time and a large memory capacity

[19, 20].

2.5.2 Motivation

Intraretinal layer segmentation is of importance to monitor the progress of retinal

diseases such as the variation of the RNFL and macular edema formation. A study

on the intraretinal layer segmentation method which is fast, accurate and capable of

detecting more layers is highly required. Our study is directly motivated by Garvin’s

preliminary research [19, 20] and Gerth’s paper [4].

2.6 Segmentation of the optic disc in 3-D ONH-centered OCT scans

2.6.1 Prior approaches

Previously several groups, including ours, have studied a variety of automated

methods to segment and quantify the optic discs from 2-D retinal images [1, 6, 46].

Carmona et al. introduced an automatic system to locate and segment the optic

disc in eye fundus images using genetic algorithms [6]. The genetic algorithm was used

to find an ellipse containing the maximum number of hypothesis points. However,

this method has a potential error if the shape of the optic disc is not a perfect ellipse,
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and the method did not segment the optic disc cup.

Xu et al. developed an automated system for assessment of the optic disc on

stereo disc photographs [46]. They used a deformable model technique, which deforms

an initial contour to minimize the energy function defined from contour shape and

contour location, to detect optic cup and disc margins.

Abràmoff et al. presented a study on the automated segmentation method of the

optic disc cup and rim from stereo color photographs using pixel feature classification,

including a depth from stereo disparity feature, and compared their segmentation

results with glaucoma experts and glaucoma experts in training [1].

2.6.2 Motivation

Although direct quantification of ONH parameters in 3-D seems attractive, clin-

ical management is historically based on assessment of the optic disc in stereo color

photographs [26]. Since glaucoma is a slowly progressive disease, with changes occur-

ring over many years, it is currently not clear what 3-D ONH parameters, if any, are

suitable for glaucoma progression measurement. Therefore, in order to allow compar-

isons with historically accepted optic disc planimetry, segmentation of the optic disc

directly from the 3-D OCT is attractive. The question whether automated planime-

try can be performed directly from 3-D OCT scans is open and, to the best of our

knowledge, has not been previously studied.

2.7 Segmentation of the retinal blood vessels in 3-D ONH-centered

OCT scans

2.7.1 Prior approaches

Many studies on 2-D segmentation of retinal blood vessels from a variety of medical

images have been performed.

Gang et al. introduced a matched filter-based method using an amplitude-modified

second-order Gaussian filter to detect and measure retinal vessels in color fundus im-
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ages [18].

Hoover et al. proposed a thresholding-based method to locate and outline blood

vessels in ocular fundus images using a piecewise threshold obtained from local and

global vessel features cooperatively [22].

Can et al. presented a tracking-based method to trace retinal vasculature in live

retinal video angiograms and extract features such as intersections and crossovers [5].

Zana et al. introduced a mathematical morphology-based method using curvature

evaluation to detect vessel-like patterns in noisy color fundus images [47].

Staal et al. proposed a classification-based method to segment blood vessels in

color images of the retina. Image ridges coinciding approximately with vessel center-

lines were used as feature vectors [40].

Xu et al. presented a hybrid algorithm using a matched filter, mathematical

morphology, contrast enhancement and thresholding probe for segmentation of the

retinal vessels in scanning laser ophthalmoscopy (SLO) images [46].

Niemeijer et al. proposed a supervised pixel classification-based vessel segmenta-

tion approach in OCT projection images [33].

2.7.2 Motivation

Segmentation of retinal blood vessels plays an important role in the diagnosis of

retinal vascular disease including diabetic retinopathy. Several morphological fea-

tures such as diameter, length, branching angle, and tortuosity of veins and arteries

in the retina have diagnostic relevance [36]. Many studies on 2-D segmentation of the

retinal blood vessels from a variety of medical images such as color fundus images,

retinal video angiograms, SLO images and OCT projection images have been per-

formed. However, 3-D segmentation of the retinal blood vessels in spectral-domain

OCT volumes, which can provide 3-D features of the vessels for the diagnosis of reti-

nal vascular diseases, to the best of our knowledge, has not been previously studied.

Localization of the retinal vessels in 3-D including their depth in the retina has the
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potential to increase our understanding of the oxygenation of the inner retina close

to the optic disc. Possibly the depth distribution of the vessels in a subject, i.e. how

many of their vessels are “superficial” rather than “deep” can be an independent risk

for glaucoma and retinal vascular diseases. The distribution may even be genetically

distributed.
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CHAPTER 3
SEGMENTATION OF THE INTRARETINAL LAYERS IN 3-D

MACULAR OCT SCANS

3.1 Methods

We developed a method which can detect ten intraretinal layers identified by

eleven retinal surfaces in spectral-domain OCT scans. First, the retinal surfaces

which will be segmented in this study were defined in Section 3.1.1. The multiscale

3-D graph search, a fast extension of the 3-D graph search method, was developed to

segment these intraretinal layers [27] (Sections 3.1.2, 3.1.3 and 3.1.4). The multiscale

3-D graph search approach detects the surface in a high-resolution OCT subvolume

constrained by the surface segmented at a lower resolution. Therefore, a fast pro-

cessing is possible by dealing with several OCT subvolumes instead of a whole OCT

volume. An edge-based cost function of the graph search, which consisted of gradient

magnitudes of the dark-to-bright or bright-to-dark transition from top to bottom of

the OCT volume, were used for each retinal surface.

3.1.1 Definition of eleven retinal surfaces

A retina includes many intraretinal layers such as ILM/NFL, GCL, IPL, INL,

OPL, ONL, OLM, ISL, CL, OSL, VM and RPE/BM (Fig. 3.1). Each intraretinal

layer is identified by two retinal surfaces which have the dark-to-bright or bright-to-

dark transition of voxel intensities from top to bottom of the spectral-domain OCT

scan. Fig. 3.1(b) shows the intraretinal surfaces (surfaces 1 – 11) which will be

segmented in this study. While surfaces 1, 3, 5, 7, 9 and 10 have the dark-to-bright

transition from top to bottom of the OCT scan, surfaces 2, 4, 6, 8 and 11 have the

bright-to-dark transition. Segmentation of OLM and ISL is excluded in this study

since they are obscure in spectral-domain macular OCT scans.
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(a) (b)

Figure 3.1: Definition of eleven retinal surfaces (surfaces 1 – 11). (a) X-Z image of
the flattened macular OCT scan from a normal subject. (b) Image (a) overlapped
with eleven retinal surfaces.

(a) (b) (c)

(d) (e) (f)

Figure 3.2: Segmentation of surfaces 1 in levels 1 and 2. (a) OCT volume in level 1.
(b) Cost function in level 1. (c) Cost function in level 1 overlapped with segmented
surface 1 (top line) and the surface combined of surfaces 7, 9 and 10 (bottom line). (d)
Cost function of the OCT subvolume in level 2 constrained by surface 1 segmented in
level 1. (e) Cost function (d) overlapped with segmented surface 1. (f) OCT volume
in level 2 overlapped with segmented surface 1.



www.manaraa.com

21

3.1.2 Segmentation of surfaces 1 and 7

Using a multiscale 3-D graph search method, surfaces 1 and 7 were detected in

spectral-domain OCT scans. The method starts by creating five multiscale OCT

volumes subsampled by a factor of 2 in the z-axis. Level 5 represents full resolution,

and level 1 is the lowest resolution. This subsampling process has an effect on reducing

speckle noise in OCT volumes of low resolutions so that some retinal surfaces have

clear borders in low resolutions. Fig. 3.2(a) shows two clear surfaces, surface 1 and

the surface combined of surfaces 7, 9 and 10 in the OCT volume in level 1, and

they were detected using a 3-D double surface graph search method (Fig. 3.2(c)).

The cost functions for the 3-D double surface graph search method were smoothed,

inverted gradient magnitudes of the dark-to-bright transition from top to bottom of

the OCT volume in level 1 (Fig. 3.2(b)). A 3 × 3 × 3 averaging filter was used

to improve the connectivity of the surfaces as well as reduce the OCT speckle noise.

The smoothed gradient magnitudes were inverted since the 3-D double surface graph

search method detects two optimal surfaces having the minimum cost. Surface 1

segmented in level 1 provided the approximate z-positions of surface 1 in level 2 by

multiplying the z-positions of surface 1 in level 1 by 2. In the OCT subvolume, which

consists of the OCT volume constrained by two surfaces having small margins in the

z-axis above and below the approximate surface 1 in level 2, accurate surface 1 in

level 2 was detected using a 3-D single surface graph search (Fig. 3.2(d–e)). Surface

1 segmented in the OCT subvolume is inversely transformed into the OCT volume

in level 2 (Fig. 3.2(f)). In the same fashion, surfaces 1 in levels 3, 4 and finally 5

were hierarchically detected. Segmentation of surface 7 is the same as that of surface

1 except using a 3-D double surface graph search based on the surface combined of

surfaces 7, 9 and 10 in the OCT volume in level 1 (the bottom line in Fig. 3.2(c)).

The 3-D double surface graph search method detected two surfaces, surface 7 and the

surface combined of surfaces 9 and 10. If a 3-D single surface graph search is applied
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Segmentation of surfaces 2, 4 and 6 in level 3. (a) OCT subvolume in
level 3. (b) Cost function. (c) Cost function overlapped with the segmented surfaces.
(d) OCT volume in level 3. (e) OCT volume in level 3 overlapped with the segmented
surfaces inversely transformed from image (c). (f) OCT volume in level 3 overlapped
with the modified surfaces.

to segment surface 7, the segmentation result would be locally distracted by surfaces

9 and 10 since they have the same properties of the dark-to-bright transition from

top to bottom of the OCT volume. Explanation about segmentation of surfaces 9

and 10 will be described in Section 3.1.4.

3.1.3 Segmentation of surfaces 2, 3, 4, 5 and 6

For segmentation of surfaces 2, 3, 4, 5 and 6, levels 3, 4, 5 was used since these

surfaces are not clear in lower resolutions such as levels 1 and 2. Surfaces 2, 4 and 6

exist between segmented surfaces 1 and 7 with the bright-to-dark transition from top

to bottom of the OCT volume. The OCT subvolume in level 3 between surfaces 1 and

7 was created based on the middle surface of surfaces 1 and 7 (Fig. 3.3(a)). Surfaces

2, 4 and 6 in the OCT subvolume were segmented by a 3-D triple surface graph search

method using cost functions which were smoothed, inverted gradient magnitudes of

the bright-to-dark transition from top to bottom of the OCT subvolume (Figs. 3.3(b–

c)). Surfaces 2, 4 and 6 segmented in the OCT subvolume were inversely transformed
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into the OCT volume in level 3 (Fig. 3.3(e)). Due to surface separation constraints

of the 3-D triple surface graph search method, the segmentation results of surfaces 2,

4 and 6 around the macular center are not accurate. In order to solve this problem,

surfaces 2, 4 and 6 around the macular center were modified using thin-plate splines

which were fitted to surface 2, 4 and 6 excluding the subsurfaces around the macular

center and the macular center (Fig. 3.3(f)). The macular center was positioned 3

voxels below segmented surface 1 at the (x, y) location having the minimum distance

between segmented surfaces 1 and 7. Based on surfaces 2, 4 and 6 modified in level 3,

surfaces 2, 4 and 6 in levels 4 and 5 were detected by hierarchically applying three 3-D

single surface graph searches for each level. Surfaces 2 and 5 can be distinguished by

the dark-to-bright transition from top to bottom of the OCT volume between surfaces

1 and 3 and between surfaces 4 and 6, respectively. In levels 3, 4 and 5, surfaces 2 and

5 were hierarchically segmented using two 3-D single surface graph search methods

for each level.

3.1.4 Segmentation of surfaces 8, 9, 10 and 11

For segmentation of surfaces 8, 9, 10 and 11, only level 5 was utilized since they

are obscure in lower resolutions. Surfaces 8 and 11 were defined by the bright-to-

dark transition from top to bottom of the OCT volume below surface 7 and below

the surface combined of surfaces 9 and 10 in Section 3.1.2, respectively. Surfaces 8

and 11 in level 5 were detected by applying two 3-D single surface graph searches,

respectively. Surface 10 exists right above segmented surface 11 with the dark-to-

bright gray transition from top to bottom of the OCT volume. Surface 10 in level 5

was detected by a 3-D single surface graph search. Finally, surface 9 exists between

segmented surfaces 8 and 10 with the dark-to-gray transition from top to bottom of

the OCT volume, and it was detected by a 3-D single surface graph search.
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3.2 Experiments

3.2.1 Data

Fourteen spectral-domain macular OCT scans were acquired from the right eyes

of 14 normal subjects at the University of Iowa using Cirrus HD-OCT (Carl Zeiss

Meditec, Inc., Dublin, CA, USA) machines. Each OCT scan consists of 200 × 200

× 1024 voxels covering 6 × 6 × 2 mm3, the voxel size is 30 × 30 × 2 μm, and the

voxel depth is 8 bits in grayscale. The acquisition time of each volumetric scan is

1.48 seconds. The Institutional Review Board of the University of Iowa approved the

research protocol.

To validate our intraretinal layer segmentation method, our segmentation results

were compared with reference standards which were created by averaging in the z-

direction manual tracings obtained from two ophthalmologists. The manual tracings

were performed in 10 randomly selected X-Z images for each volumetric OCT scan

so 140 X-Z images from 14 OCT scans were used for validation.

3.2.2 Validation

To evaluate our intraretinal layer segmentation approach, our segmentation re-

sults were compared with the reference standards. The accuracy of our segmentation

results was estimated by unsigned/signed border positioning errors and absolute layer

thickness differences. The unsigned/signed border positioning errors were calculated

by measuring unsigned/signed Euclidean distances in the z-axis between our segmen-

tation results and the reference standards, respectively. If our segmentation result is

located above the reference standard, the signed border positioning error is negative,

otherwise positive. To validate the method, the unsigned/signed border positioning

errors were compared with the unsigned/signed border positioning differences be-

tween two manual tracings. If the manual tracing from observer 2 is located above

that from observer 1, the signed border positioning difference is negative, otherwise
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Table 3.1: Mean unsigned border positioning errors between our segmentation results
and reference standards, and mean unsigned border positioning differences between
manual tracings from two observers (Mean ± SD).

Surface Algo. vs. Ref. Algo. vs. Ref. Obs. 1 vs. Obs. 2 Obs. 1 vs. Obs. 2
(voxel) (μm) (voxel) (μm)

1 1.35 ± 1.08 2.70 ± 2.15 1.83 ± 1.46 3.65 ± 2.92
2 3.45 ± 4.29 6.89 ± 8.59 6.99 ± 7.67 13.99 ± 15.35
3 6.80 ± 5.19 13.59 ± 10.38 16.94 ± 7.80 33.89 ± 15.59
4 2.49 ± 2.47 4.98 ± 4.93 3.63 ± 3.54 7.27 ± 7.08
5 3.72 ± 2.61 7.45 ± 5.21 3.75 ± 3.64 7.50 ± 7.29
6 2.94 ± 2.56 5.87 ± 5.13 3.29 ± 2.94 6.58 ± 5.89
7 1.57 ± 2.61 3.13 ± 5.21 2.44 ± 5.26 4.87 ± 10.51
8 1.30 ± 1.21 2.59 ± 2.42 1.97 ± 2.03 3.95 ± 4.05
9 2.69 ± 1.93 5.37 ± 3.87 3.70 ± 2.71 7.40 ± 5.41
10 3.30 ± 2.44 6.60 ± 4.88 3.32 ± 2.50 6.63 ± 5.00
11 2.03 ± 1.69 4.07 ± 3.39 2.44 ± 2.17 4.88 ± 4.34

overall 2.88 ± 2.55 5.75 ± 5.11 4.57 ± 3.79 9.15 ± 7.58

positive. In addition, the absolute thickness differences between our segmentation

results and the reference standards were compared with those between two manual

tracings. After confirming the normal distributions of two datasets by the Shapiro-

Wilk test, a paired t-test was used in the 95% confidence interval to compare these

two datasets.

3.3 Results

Table 3.1 shows mean unsigned border positioning errors between our segmenta-

tion results and the reference standards, and mean unsigned border positioning differ-

ences between manual tracings from two observers. Table 3.2 represents p-values for

paired t-tests between the mean unsigned border positioning errors and differences.

While the unsigned border positioning errors of surfaces 1, 2, 3, 4, 6, 7, 8, 9 and 11

were significantly smaller than the unsigned border positioning differences, those of

surfaces 5 and 10 were not significantly different from the unsigned border positioning

differences.
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Table 3.2: p-values for paired t-tests between unsigned border positioning errors
between our segmentation results and the reference standards, and unsigned border
positioning differences between manual tracings from two observers.

Surface p-value
1 < 0.01
2 < 0.01
3 < 0.01
4 < 0.01
5 > 0.21
6 < 0.01
7 < 0.01
8 < 0.01
9 < 0.01
10 > 0.40
11 < 0.01

Table 3.3: Mean signed border positioning errors between our segmentation results
and reference standards, and mean signed border positioning differences between
manual tracings from two observers (Mean ± SD).

Surface Algo. vs. Ref. Algo. vs. Ref. Obs. 1 vs. Obs. 2 Obs. 1 vs. Obs. 2
(voxel) (μm) (voxel) (μm)

1 -0.62 ± 1.61 -1.24 ± 3.22 0.07 ± 2.34 0.14 ± 4.68
2 2.18 ± 5.06 4.35 ± 10.11 6.23 ± 8.31 12.45 ± 16.62
3 6.33 ± 5.76 12.65 ± 11.51 16.88 ± 7.93 33.77 ± 15.85
4 -0.36 ± 3.49 -0.71 ± 6.98 -0.35 ± 5.06 -0.70 ± 10.12
5 -3.22 ± 3.20 -6.44 ± 6.41 1.65 ± 4.96 3.30 ± 9.93
6 -2.09 ± 3.29 -4.19 ± 6.58 0.93 ± 4.32 1.86 ± 8.63
7 -0.37 ± 3.02 -0.74 ± 6.04 0.53 ± 5.77 1.06 ± 11.54
8 0.44 ± 1.72 0.89 ± 3.43 0.45 ± 2.79 0.90 ± 5.59
9 -0.34 ± 3.29 -0.68 ± 6.58 2.25 ± 3.99 4.49 ± 7.99
10 -2.74 ± 3.06 -5.47 ± 6.11 -0.22 ± 4.15 -0.43 ± 8.29
11 0.91 ± 2.48 1.82 ± 4.97 0.14 ± 3.26 0.29 ± 6.53
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Table 3.4: p-values for paired t-tests between signed border positioning errors between
our segmentation results and reference standards, and signed border positioning dif-
ferences between manual tracings from two observers.

Surface p-value
1 < 0.01
2 < 0.01
3 < 0.01
4 > 0.90
5 < 0.01
6 < 0.01
7 < 0.01
8 > 0.81
9 < 0.01
10 < 0.01
11 < 0.01

Table 3.3 shows mean signed border positioning errors between our segmentation

results and the reference standards, and mean signed border positioning differences

between manual tracings from two observers. Table 3.4 represents p-values for paired

t-tests between the mean signed border positioning errors and differences. While the

signed border positioning errors of surfaces 2, 3, 7 and 9 were significantly smaller

than the signed border positioning differences, those of surfaces 1, 5, 6, 10 and 11

were significantly larger than the signed border positioning differences. There were

no significant differences in surfaces 4 and 8. Additionally while our segmentation

results were located slightly above the reference standards in surfaces 1, 4, 5, 6, 7, 9

and 10, those were not in the remaining surfaces.

Table 3.5 shows mean absolute thicknesses differences between our segmentation

results and the reference standards, and between manual tracings from two observers.

In all layers except layer 10-11, absolute thicknesses differences between our segmenta-

tion results and the reference standards were significantly smaller than those between

manual tracings from two observers.

Figs. 3.4 and 3.5 show our segmentation results in the best and worst performance
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(a) Slice 16

(b) Slice 24

(c) Slice 62

(d) Slice 83

(e) Slice 93

Figure 3.4: Segmentation results of ten intraretinal layers in the best performance
case. The first column shows X-Z images of the original OCT volume, and the second
and third columns represent our segmentation results and the reference standards,
respectively.
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(a) Slice 4

(b) Slice 22

(c) Slice 45

(d) Slice 83

(e) Slice 102

Figure 3.5: Segmentation results of ten intraretinal layers in the worst performance
case. The first column shows X-Z images of the original OCT volume, and the second
and third columns represent our segmentation results and the reference standards,
respectively.
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Table 3.5: Mean absolute thicknesses differences between our segmentation results
and reference standards, and between manual tracings from two observers (Mean ±
SD), and p-values for paired t-tests between these absolute thicknesses differences.

Layer Algo. vs. Ref. Obs. 1 vs. Obs. 2 p-value
(μm) (μm)

1-2 7.46 ± 8.76 14.15 ± 15.32 < 0.01
2-3 12.04 ± 10.21 26.10 ± 17.09 < 0.01
3-4 13.92 ± 10.61 34.58 ± 15.52 < 0.01
4-5 7.02 ± 5.34 8.92 ± 7.76 < 0.01
5-6 4.89 ± 4.12 6.98 ± 6.54 < 0.01
6-7 5.79 ± 6.42 8.17 ± 10.56 < 0.01
7-8 3.45 ± 4.48 4.98 ± 9.02 < 0.01
8-9 5.72 ± 4.03 7.20 ± 5.45 < 0.01
9-10 6.41 ± 4.85 8.59 ± 6.31 < 0.01
10-11 7.64 ± 4.32 6.47 ± 4.81 < 0.01

Figure 3.6: 3-D rendering of eleven segmented retinal surfaces in the best performance
case.
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which have the minimum and maximum sums of unsigned border positioning errors

of all retinal surfaces, respectively. In addition, Fig. 3.6 shows the 3-D rendering of

eleven segmented retinal surfaces in the best performance case.

3.4 Discussion

We have presented a method to automatically segment eleven retinal surfaces

defining ten intraretinal layers in spectral-domain macular OCT scans using a multi-

scale 3-D graph search method. The main contribution of this study is development

of the fast intraretinal layer segmentation method which deals with several OCT

subvolumes instead of a whole OCT volume.

The presented method shows excellent results. From Tables 3.1 and 3.2, the

overall mean unsigned mean border positioning error was 2.88 ± 2.55 voxels (5.75

± 5.11 μm). Surface 3 had a slightly larger mean unsigned bordering positioning

error than other surfaces since surfaces 3 are obscured in some cases. However, the

mean unsigned bordering positioning error was much smaller than the mean border

positioning difference between two manual tracings. Based on Tables 3.3 and 3.4,

the small signed border positioning differences in surfaces 1, 5, 6, 10 and 11 are not

so meaningful since these surfaces have the significantly larger or similar unsigned

border positioning differences compared with the unsigned border positioning errors.

In Table 3.5, our method showed a good property of the intraretinal layer thicknesses

except layer 10-11.

To the best of our knowledge, Garvin’s preliminary method segmented the largest

number of intraretinal layers (six layers) of prior approaches with good accuracy in

spectral-domain OCT scans [19]. Therefore, the reported method was compared with

her method in terms of the number of segmented layers, speed and accuracy. First,

our method was capable of detecting four more intraretinal layers than hers. Second,

compared with her method requiring over 10 hours (Windows XP Professional x64,

Intel Xeon CPU @ 3.2 GHz, 10 GB of RAM), our method required only 70 seconds
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(Windows XP Professional x64, Intel Core 2 Duo CPU @ 3.0 GHz, 4 GB of RAM).

Finally, our segmentation results showed similar accuracy to her segmentation results

in Tables 3.1 and 3.3.

To improve the segmentation accuracy, the addition of regional information to

the current edge-based cost function for the 3-D graph search and the multiscale 3-D

graph search with varying constraints could be meaningful [19, 20]. The multiscale

3-D graph search method has a limitation in case that some retinal surfaces are

invisible in OCT volumes of low resolutions. The method was tested in OCT scans

from normal subjects in this study. It needs to be tested in OCT scans from patients

having some diseases such as glaucoma, anterior ischemic optic neuropathy (AION)

and facioscapulohumeral muscular dystrophy (FSHD) [19].
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CHAPTER 4
SEGMENTATION OF THE OPTIC DISC IN 3-D ONH-CENTERED

OCT SCANS

4.1 Methods

The method starts by segmenting three retinal surfaces in the original spectral-

domain OCT volume using a multiscale 3-D graph search-based method (Fig. 4.1,

Section 4.1.1). An OCT projection image was created by averaging in the z-direction

the OCT subvolume between surfaces 2 and 3 (Section 4.1.2). The OCT volume,

retinal surface segmentation and OCT projection image were used as features for

classification of the optic disc cup and neuroretinal rim. The optic disc cup and

rim were detected by a contextual k -NN classifier incorporating neighboring A-scans

(Section 4.1.3). Finally, prior knowledge about the shapes of the optic disc cup and

neuroretinal rim regions was incorporated through the application of convex hull-

based fitting (Section 4.1.5).

4.1.1 Segmentation of three retinal surfaces using a multiscale 3-D graph search

Segmentation of three retinal surfaces in ONH-centered OCT volumes is a pre-

processing step for our supervised classification-based optic disc cup and rim seg-

mentation method. Surface 1 in Fig. 4.1 represents the depth of the ONH which

is a dominant feature of the optic disc cup and rim. Surfaces 2 and 3 are required

to create an OCT projection image which is used for creating the optic disc ground

truth of the OCT volume (Section 4.1.2). The OCT projection image is also utilized

as a feature for optic disc classification of the OCT volume (Section 4.1.3).

We developed a fast multiscale extension of the 3-D graph search method to

detect these retinal surfaces in ONH-centered OCT volumes. The basic idea of the

multiscale 3-D graph search is to detect the surface in the high resolution using the

surface segmented in the low resolution. The method starts by creating five multiscale

OCT volumes. The OCT volume in level 5 is the original OCT volume, and that in
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(a) (b)

Figure 4.1: Definition of three retinal surfaces (surfaces 1 – 3). (a) X-Z image of the
original OCT volume. (b) Image (a) overlapped with three retinal surfaces. Surface
1 is the upper surface of the GCL, surface 2 is the in-between surface of the ICL and
CL, and surface 3 is the lower surface of the RPE/BM.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Segmentation of surface 1 in level 1. (a) OCT volume in level 1. (b) Cost
functions for double and single surface 3-D graph searches. (c) Double surface 3-D
graph search result. The top surface (red line) is surface 1, and the bottom surface
(green line) is surface 2. (d) Single surface 3-D graph search result. (e) Thin plate
spline (yellow line) fitted to surface 2 in image (c) excluding the subsurface close
to the center of the optic disc cup and including the control point (orange dot) to
guide the thin plate spline. The center of the optic disc cup is the (x, y) location in
which the surface (blue line) in image (d) has the lowest z-position, and the control
point is, at the center of the optic disc cup, the middle point in the z-axis of the
surface in image (d) and the another thin plate spline fitted to surface 2 in image (c)
excluding the subsurface close to the center of the optic disc cup. (f) Final surface
1 segmentation result. If the surface in image (d) is lower than the surface located 2
voxels below the thin plate spline (yellow line) in image (e), the z-positions of surface
1 in image (c) were replaced by the surface in image (d).
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(a) (b)

(c)

Figure 4.3: Segmentation results of three retinal surfaces in the ONH-centered OCT
volume. (a) X-Z image of the original OCT volume. (b) Image (a) overlapped with
the segmented retinal surfaces. (c) 3-D rendering of the segmented retinal surfaces.
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level 4 was subsampled by a factor of 2 in the z-axis from that in level 5. OCT volumes

in levels 3, 2 and 1 were created in the same fashion. Segmentation of surface 1 in

level 1 utilized double and single surface 3-D graph search methods (Fig. 4.2). The

cost functions for the graph searches were smoothed, inverted gradient magnitudes

of the dark-to-bright transition from top to bottom of the OCT volume. To improve

the connectivity of surfaces, a 3 × 3 × 3 averaging filter was applied to the gradient

magnitude volume, and the smoothed gradient magnitude volume was inverted since

the graph search detects optimal surfaces having the minimum cost. The approximate

position of surface 1 in level 2 was guided by the z-positions of surface 1 segmented in

level 1 multiplied by 2. The accurate position of surface 1 in level 2 was obtained by

applying a single surface 3-D graph search to the cost function which was smoothed,

inverted gradient magnitudes of the dark-to-bright transition from top to bottom of

the OCT subvolume close to the approximate position of surface 1 in level 2. In

the same fashion, surfaces 1 in levels 3, 4 and finally 5 were hierarchically detected.

Segmentation of surface 2 in level 5 was the same as that of surface 1 except using a

double surface 3-D graph search approach based on surface 2 in level 1 (Fig. 4.2(c)).

The top surface obtained by the double surface graph search is surface 2, and the

bottom surface was used for segmentation of surface 3 in level 5. Surface 3 in level

5 was detected by employing a single surface 3-D graph search to the cost function

which was smoothed, inverted gradient magnitudes of the bright-to-dark transition

from top to bottom of the OCT subvolume below the bottom surface of the double

surface graph search in level 5. Fig. 4.3 shows our segmentation results of three

retinal surfaces. In addition, the retinal surface segmentation was performed in the

whole OCT volume (200 × 200 × 1024 voxels) for creating the optic disc reference

standard of the ONH-centered OCT scan in Section 4.2.1 and in the partial OCT

volume (center 100 × 100 × 1024 voxels) for the optic disc segmentation in Section

4.1.3.
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4.1.2 OCT projection image

An OCT projection image is necessary for creating the optic disc ground truth

of a spectral-domain OCT scan in Section 4.2.1. In contrast with the unprocessed

3-D OCT scan, the retinal vasculature is visible in the projection image. Feature

points derived from the vasculature such as bifurcations can be used to register the

fundus image with the OCT volume. Additionally, the projection image provides

features for the cup and rim classification of the OCT volume in Section 4.1.3. The

OCT projection image was created by averaging in the z-direction the OCT subvolume

between surfaces 2 and 3 segmented in Section 4.1.1. These two surfaces define a layer

that, due to its position in the retina and high contrast with the retinal background,

contains a large number of high contrast vessel shadows [33].

4.1.3 Segmentation of the optic disc using a contextual k -NN classifier

To segment the optic disc cup and neuroretinal rim from the background, a super-

vised classification method was used. This method assigned one of three labels (i.e.

background, cup, rim) to each A-scan in the 3-D OCT scan. A set of ten features,

obtained from original OCT volumes and retinal surfaces and OCT projection images

were calculated for each A-scan in the OCT volume (Fig. 4.4).

• Features 1 – 6: Average voxel intensities of six local A-scans. One local A-scan

consists of 30 voxels in the z-axis. Six local A-scans cover 60 voxels above the

thin plate spline fitted to surface 2 excluding the subsurface around the center

of the optic disc cup, and 120 voxels below it. The center of the optic disc cup

is defined as the (x, y) position of the lowest point of surface 1 in the z-axis.

• Feature 7: Distances between surface 1 and the thin plate spline fitted to sur-

face 2 excluding the subsurface around the center of the optic disc cup, which

measure the depth of the ONH.

• Feature 8: OCT projection image, which contains information about the vas-
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Figure 4.4: Ten features (features 1 – 10 from top left to bottom right). The features
were mapped between 0 and 255 for the purpose of visualization. The center 100 × 100
A-scans of the original ONH-centered OCT volume were used for feature calculation
since the ONH is located in this volume.

culature and the location of the neuroretinal rim edge.

• Features 9, 10: Displacements from the center of the optic disc cup in x- and

y-directions, which represent the positions of the optic disc cup and rim.

Each feature was normalized to have zero mean and unit variance. A k -NN clas-

sifier [3] was used to perform the classification. For each A-scan the classifier deter-

mined the k nearest neighbors in the feature space and assigned the most common

label amongst the nearest neighbors to the query A-scan (Fig. 4.5(b)).

A-scan classification based on the regular k -NN classifier can result in noisy output

due to the fact the classification is based on individual A-scans, and the classifier does

not take information from neighboring A-scans into account. From prior knowledge

it is known the method should find two 8-connected objects (i.e. the optic disc cup

and rim) surrounded by the background. As such one can assume that A-scans that

are close together have a high probability of having the same label. This observation

led us to incorporate information from neighboring A-scans in the classification of

the query A-scan. Instead of just determining the k nearest neighbors for the A-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: Segmentation results of the optic disc cup and neuroretinal rim. (a) OCT
projection image. (b) Segmentation result obtained by a 61-NN classifier. The optic
disc cup is in white, the neuroretinal rim is in gray, and the background is in black.
(c) Segmentation result obtained by a 9-31-NN classifier. (d) Segmentation result
obtained by a 9-31-NN classifier with convex hull-based fitting. (e) OCT projection
image overlapped with the reference standard. The optic disc cup is in red, and the
neuroretinal rim is in green. (f) OCT projection image overlapped with image (b).
(g) OCT projection image overlapped with image (c). (h) OCT projection image
overlapped with image (d).
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scan under consideration, all nearest neighbors for each of the individual A-scans in

the 3 × 3 neighborhood centered on the query A-scan were determined. The most

frequent label amongst these nearest neighbors was assigned to the query A-scan (Fig.

4.5(c)). From this point forward, this classification method is referred to as “9-k -NN”

classification.

4.1.4 Parameter selection

Parameter selection includes k -value selection for the k -NN, 9-k -NN classifiers and

feature selection. Three-fold cross validation was performed using a training set of

44 OCT scans and a testing set of 22 OCT scans. For each fold, the training set was

split into 22 OCT training scans and 22 OCT testing scans utilized for the parameter

selection. Eleven k -values (k = 1, 11, · · · , 101) were compared in terms of the sum of

Dice similarity coefficients (DSCs) of the cup and rim between classification results

and reference standards [48]. The DSC measures the spatial overlap between two

regions, A and B, and is defined as DSC(A, B) = 2(A∩B)/(A + B), where ∩ is the

intersection. In Fig. 4.6, the 61-NN and 9-31-NN classifiers had the maximum sums

of DSCs of the cup and rim. The 9-k -NN classification had larger sums of DSCs of

the cup and rim than the k -NN classification in the eleven tested k -values. After

k -value selection, the feature selection was performed using the sequential forward

feature selection algorithm [2]. Table 4.1 shows the features selected for the 9-k -NN

classification in three phases. All features were selected since features 2, 3, 4, 7, 9,

10 were useful in all phases, and features 1, 5, 6, 8 were helpful in some phases. In

addition, feature 7 representing the depth of the ONH was the most dominant feature

in all phases.

4.1.5 Post-processing using convex hulls

To preserve the shapes of the optic disc cup and neuroretinal rim which are known

to be semi-circular structures, a local fitting method using the convex hulls of the
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Figure 4.6: The sum of DSCs of the cup and rim according to k -values.

Table 4.1: Selected features for the 9-31-NN classification. The first feature is the
most dominant.

Phases Features
1 7, 4, 2, 3, 1, 10, 9, 6
2 7, 4, 2, 3, 1, 9, 5, 10
3 7, 4, 2, 3, 5, 9, 10, 6, 8
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segmentations was developed. This post-processing step was performed to smooth

the segmentation results for both the optic disc cup and neuroretinal rim, and Fig.

4.7 visually illustrates the procedure. Fig. 4.7(a) shows the segmentation result

obtained by the 9-k -NN classifier. The optic disc cup is used as an example here

but the same procedure can be applied to the neuroretinal rim segmentation. The

procedure starts by determining the convex hull of the segmentation (Fig. 4.7(b)).

To detect the innermost boundary of the segmented object, we turn it “inside-out”.

Each edge point located at distance r from the center (Fig. 4.7(c)) is relocated to

a position R − r from the center (Fig. 4.7(d)). Here R is the radius of a circle

around the segmentation, and the circle should be large enough so that it covers

the segmentation. We define it such that R = 2 × max(r). The red line in Fig.

4.7(e) indicates the convex hull of the inside-out segmentation edge. The innermost

boundary of the segmentation edge (the red line in Fig. 4.7(f)) was acquired by

inversely applying the previously described transformation to the convex hull in Fig.

4.7(e). The line in between the inner and outer borders (the red line in Fig. 4.7(h))

formed the final segmentation result.

4.2 Experiments

4.2.1 Data

66 × 2 spectral-domain ONH-centered OCT scans were acquired from both the

eyes of 33 glaucoma patients at the University of Iowa using Cirrus HD-OCT (Carl

Zeiss Meditec, Inc., Dublin, CA, USA) machines. Two repeated OCT scans were

obtained for each eye. Dataset 1 consisting of the first 66 OCT scans was used for

measuring the accuracy of our segmentation results, and dataset 2 consisting of the

second 66 OCT scans was used for only measuring cup-to-disc ratio reproducibility.

Each spectral-domain OCT scan consists of 200 × 200 × 1024 voxels covering 6 × 6

× 2 mm3, the voxel size is 30 × 30 × 2 μm, and the voxel depth is 8 bits in grayscale.

We also acquired 66 stereo color photograph pairs of the optic disc on the same day of



www.manaraa.com

43

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Convex hull-based fitting. (a) Optic disc cup segmentation result obtained
by a 9-k -NN classifier. (b) Outermost region surrounded by the convex hull of the
segmentation in image (a). (c) Edge of the segmentation in image (a). Here, r is the
distance between the center of the optic disc cup and the edge of the segmentation in
image (a), and R is the radius of the circle whose origin is the center of the optic disc
cup. The R is the maximum r multiplied by 2. (d) Edge replaced r with R− r based
on the center of the optic disc cup. (e) B-spline (red line) connecting the convex
hull of image (d). (f) Innermost boundary (red line). (g) Innermost region. (h) The
middle boundary (red line) that forms the final segmentation result.
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the same patients, corresponding to the spectral-domain OCT scans, using a stereo-

base Nidek 3Dx stereo retinal camera (Nidek, Newark, NJ, USA). The size of the

stereo color photographs is 4096 × 4096 pixels, and the pixel depth is 3 × 8-bit red,

green and blue channels. The Institutional Review Board of the University of Iowa

approved the research protocol.

Since it is difficult for glaucoma specialists to directly delineate the optic disc cup

and neuroretinal rim margins in spectral-domain OCT scans, they were indirectly

acquired from an optic disc reference standard of stereo color photographs. The optic

disc reference standard of the stereo color photographs was created by optic disc

manual tracings obtained from three glaucoma experts in a “majority-win” manner

to reduce substantial inter-observer variability (Fig. 4.8) [26]. In other words, the

optic disc reference standard of the stereo color photographs was created by selecting

the most common cup and rim labels of three optic disc manual tracings for each

pixel.

Fig. 4.9 shows how to create the optic disc reference standard of the spectral-

domain OCT scan from that of the stereo color photographs. One of a pair of stereo

color photographs (Fig. 4.9(a)) was registered onto the corresponding OCT projection

image (Fig. 4.9(c)) by manually indicating two correspondence points in both the

stereo color photograph and OCT projection image (Fig. 4.9(d)). After registration,

the optic disc reference standard of the spectral-domain OCT scan (Fig. 4.9(e)) was

obtained by applying the same transformation to that of the stereo color photographs

(Fig. 4.9(b)).

4.2.2 Validation

To evaluate our optic disc cup and neuroretinal rim segmentation approach, three-

fold cross validation was performed on datasets 1 and 2 consisting of 66 × 2 spectral-

domain OCT scans using a training set from dataset 1 (see Section 4.1.4). Our optic

disc segmentation result was compared with the reference standard of the spectral-
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Reference standard obtained from optic disc manual tracings of stereo
color photographs delineated by three glaucoma experts. (a) One of a pair of stereo
color photographs. (b) The other of a pair of stereo color photographs. (c) Manual
tracing 1. The optic disc cup is in white, and the neuroretinal rim is in gray. (d)
Manual tracing 2. (e) Manual tracing 3. (f) Reference standard.
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(a) (b) (c)

(d) (e)

Figure 4.9: Optic disc reference standard of the spectral-domain OCT scan. (a) One
of a pair of stereo color photographs from Fig. 4.8(a). The red and green markers
are correspondence points for registration. (b) Optic disc reference standard of image
(a) from Fig. 4.8(f). The optic disc cup is in white, and the neuroretinal rim is in
gray. (c) OCT projection image. (d) Image (a) registered onto image (c). (e) OCT
projection image overlapped with the optic disc reference standard of the OCT scan.
The optic disc cup is in red, and the neuroretinal rim is in green.
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domain OCT scan. The accuracy of our optic disc segmentation result was estimated

by measuring DSC, unsigned/signed border positioning errors and cup-to-disc ratio

(CDR). The unsigned border positioning errors of the optic disc cup and neuroretinal

rim were calculated by measuring the closest Euclidean distances between all edge

points from our segmentation result and those from the reference standard. The

signed border positioning errors of the optic disc cup and neuroretinal rim were cal-

culated by the differences in the Euclidean distance to the center of the optic disc

cup. If the distance of an edge point from our segmentation result to the center of

the optic disc cup is shorter than that of an edge point from the reference standard

to the center of the optic disc cup, the signed border positioning error is negative,

otherwise positive. Note that these unsigned/signed border positioning errors can

only be calculated after convex hull-based fitting has been applied. The CDR was

defined as
√

nc/(nr + nc), where nc is the number of pixels in the cup, and nr is the

number of pixels in the rim [1].

To validate our optic disc segmentation method, the DSC, unsigned/signed border

positioning errors and CDR of our segmentation result were compared with the DSC,

unsigned/signed border positioning differences and CDR among three manual tracings

registered in the same manner as the reference standard of the spectral-domain OCT

scan. After confirming the normal distributions of two datasets by the Shapiro-Wilk

test, a paired t-test was used in the 95% confidence interval to compare these two

datasets.

Finally, CDR reproducibility was evaluated by the absolute CDR differences of

the repeated OCT scans from datasets 1 and 2.

4.3 Results

From Table 4.2, in comparison between k -NN and 9-k -NN classifiers, the 9-k -NN

classifier showed significantly larger DSCs for both the optic disc cup (p < 0.01) and

neuroretinal rim (p < 0.01). The DSCs from the 9-k -NN classifier with convex hull-
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Table 4.2: Mean Dice similarity coefficients (DSCs) (Mean ± SD).

61-NN vs. Ref. 9-31-NN vs. Ref. 9-31-NN + Convex vs. Ref.
Cup 0.784 ± 0.213 0.792 ± 0.221 0.827 ± 0.166
Rim 0.625 ± 0.142 0.643 ± 0.153 0.675 ± 0.151

Obs. 1 vs. 2 Obs. 1 vs. 3 Obs. 2 vs. 3
Cup 0.791 ± 0.174 0.806 ± 0.123 0.817 ± 0.154
Rim 0.580 ± 0.171 0.508 ± 0.216 0.644 ± 0.181

Table 4.3: Mean unsigned border positioning errors between our segmentation results
and reference standards, and mean unsigned border positioning differences between
two manual tracings from three observers (Mean ± SD).

Algo. vs. Ref. Obs. 1 vs. 2 Obs. 1 vs. 3 Obs. 2 vs. 3
Cup (pixel) 2.46 ± 1.01 3.02 ± 1.38 3.33 ± 1.29 3.05 ± 1.66
Cup (mm) 0.07 ± 0.03 0.09 ± 0.04 0.10 ± 0.04 0.09 ± 0.05
Rim (pixel) 2.06 ± 0.97 3.59 ± 1.30 3.01 ± 1.31 1.96 ± 0.92
Rim (mm) 0.06 ± 0.03 0.11 ± 0.04 0.09 ± 0.04 0.06 ± 0.03

based fitting were significantly larger than those from the 9-k -NN classifier for the

cup (p < 0.01) and rim (p < 0.01). While the DSCs from the 9-k -NN classifier with

convex hull-based fitting were not significantly different from those between observers

2 and 3 for the cup (p > 0.41), they were significantly larger for the rim (p < 0.04).

Based on Table 4.3, optic disc cup segmentation results from our method using

a 9-k -NN classifier with convex hull-based fitting have significantly smaller unsigned

border positioning errors than any combination of three observers (p < 0.01). In

neuroretinal rim segmentation results, the unsigned border positioning errors from

our method were significantly smaller than the unsigned border positioning differences

of observers 1 vs. 2 (p < 0.01) and observers 1 vs. 3 (p < 0.01) but they were not

significantly different from the unsigned border positioning differences of observers 2

vs. 3 (p > 0.65).

From Table 4.4, for the optic disc cup, the signed border positioning errors from
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Table 4.4: Mean signed border positioning errors between our segmentation results
and reference standards, and mean signed border positioning differences between two
manual tracings from three observers (Mean ± SD).

Algo. vs. Ref. Obs. 1 vs. 2 Obs. 1 vs. 3 Obs. 2 vs. 3
Cup (pixel) 0.52 ± 1.61 0.09 ± 1.92 2.30 ± 1.64 2.47 ± 2.23
Cup (mm) 0.02 ± 0.05 0.00 ± 0.06 0.07 ± 0.05 0.07 ± 0.07
Rim (pixel) 0.17 ± 1.32 2.65 ± 1.33 1.28 ± 1.01 -1.32 ± 1.34
Rim (mm) 0.01 ± 0.04 0.08 ± 0.04 0.04 ± 0.03 -0.04 ± 0.04

Table 4.5: Mean cup-to-disc ratios (Mean ± SD).

CDR
Algo. 0.694 ± 0.171
Ref. 0.694 ± 0.159

Obs. 1 0.714 ± 0.128
Obs. 2 0.633 ± 0.175
Obs. 3 0.756 ± 0.166

our method were significantly larger than the signed positioning differences of ob-

servers 1 vs. 2 (p < 0.01) and smaller than the signed positioning differences of ob-

servers 1 vs. 3 (p < 0.01) and observers 2 vs. 3 (p < 0.01). For the neuroretinal rim,

the signed border positioning errors from our method were significantly smaller than

the signed positioning differences from any combination of three observers (p < 0.01).

Based on Table 4.5, there were not significant CDR differences between our seg-

mentation results and the reference standards. However, there were significant CDR

differences among manual tracings from three observers (p < 0.01). Fig. 4.10 shows

four scatter-plots of CDRs between our segmentation results and the reference stan-

dards, and between two manual tracings from three observers. The slope of the

trendline of CDRs between our segmentation results and the reference standards is

much closer to 1 than those of the trendlines of CDRs between two manual tracings

from three observers.
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(a) (b)

(c) (d)

Figure 4.10: Scatter-plots of CDRs. (a) Between the reference standard and algo-
rithm. (b) Between observers 1 and 2. (c) Between observers 1 and 3. (d) Between
observers 2 and 3.
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Figure 4.11: Scatter-plot of CDRs between datasets 1 and 2.

The CDR reproducibility of our method between datasets 1 and 2 is 2.8 ± 3.2%.

Fig. 4.11 shows the scatter-plot of CDRs between datasets 1 and 2, and the slope of

the trendline of CDRs between datasets 1 and 2 is close to 1.

Figs. 4.12 and 4.13 show our optic disc segmentation results of the best and

worst performance which have the minimum and maximum sums of unsigned border

positioning errors of the optic disc cup and neuroretinal rim, respectively.

4.4 Discussion

We have presented a method to automatically segment the optic disc cup and

neuroretinal rim surfaces in ONH-centered 3-D spectral-domain OCT volumes. The

method uses a multiscale 3-D graph search method to segment the retinal surfaces

and a k -NN classifier that employs contextual information combined with convex

hull-based fitting to segment the optic disc cup and neuroretinal rim.

The necessity of the contextual k -NN classifier and convex hull-based post-processing

was confirmed in terms of DSCs (Table 4.2). The presented results show that the
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(a) (b) (c)

Figure 4.12: Segmentation results of the optic disc in the best performance case
(unsigned border positioning error for the optic disc cup = 0.73 pixels (0.022 mm)
and unsigned border positioning error for the neuroretinal rim = 1.13 pixels (0.034
mm)). From top to bottom, stereo color photograph, X-Z and Y-Z images at the
center of the OCT volume and 3-D rendering of the top retinal surface (surface 1)
mapped with the stereo color photograph. (a) Without any overlap. (b) Overlapped
with our segmentation result. The optic disc cup is in red, and the neuroretinal rim
is in green. (c) Overlapped with the reference standard.
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(a) (b) (c)

Figure 4.13: Segmentation results of the optic disc in the worst performance case
(unsigned border positioning error for the optic disc cup = 5.44 pixels (0.163 mm)
and unsigned border positioning error for the neuroretinal rim = 6.38 pixels (0.191
mm)). From top to bottom, stereo color photograph, X-Z and Y-Z images at the
center of the OCT volume and 3-D rendering of the top retinal surface (surface 1)
mapped with the stereo color photograph. (a) Without any overlap. (b) Overlapped
with our segmentation result. The optic disc cup is in red, and the neuroretinal rim
is in green. (c) Overlapped with the reference standard.
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contextual k -NN classifier outperforms the regular k -NN classifier (p < 0.01 for both

the cup and rim) when no post-processing is applied. If post-processing is applied,

the contextual classifier has significantly larger DSCs on both the cup (p < 0.01) and

rim (p < 0.01) segmentations. In addition, the use of post-processing also improves

the pixelated appearance of the segmentation result.

The method shows excellent results when compared with the inter-observer vari-

ability among three observers in terms of DSCs, unsigned/signed border positioning

errors and CDRs (Table 4.2, 4.3, 4.4, 4.5 and Fig. 4.10). The DSCs, unsigned/signed

errors and CDRs between our segmentation results and the reference standards are

similar or significantly better than those between two manual tracings from three

observers except the signed border positioning errors for the cup. However, the small

signed border positioning differences for the cup between observers 1 and 2 in Table

4.4 is not meaningful in this case since the unsigned border positioning differences for

the cup in Table 4.3 is large. In other words, manual cup tracings from observers 1

and 2 have a large variation with a small bias. In addition, the method has a good

CDR reproducibility between the repeated scans from datasets 1 and 2 (2.8 ± 3.2%,

Fig. 4.11).

In general the method shows good performance. Some issues remain with the

ability of the method to adapt to normal anatomical variations inside the ONH.

The shape of the ONH in 3-D is similar across the patients in this study. However,

the width and depth of the optic cup do vary considerably. The ONH in the best

performing case (see Fig. 4.12) has a very wide optic disc cup, and a vessel is running

along the cup disturbing the ONH depth measurement. This example illustrates one

of the largest issues for the current method. Vessels near the ONH tend to be wide,

and they can run partially along the optic disc cup disturbing the local geometry and

depth measurements. This in turn can lead to misclassified A-scans on the vessels

and a less accurate cup or rim border location. The problem would be alleviated by
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including the output of a vessel segmentation system applied to the OCT projection

image in the feature set. Another largest issue for the current method is how to deal

with non-typical OCT scans having a small optic cup (see Fig. 4.13). The dominant

features of typical OCT scans such as the depth of the ONH are useless in the non-

typical OCT scans. Therefore, more study on the features which are useful for the

non-typical OCT scans is required. In this study, 8 non-typical scans having a small

optic cup like Fig. 4.13 out of the 132 OCT scans were included in the experimental

data.

There are a number of other possible improvements to the system. The retinal

surface segmentation results are a possible source of errors. When large variations

in the surface are present, segmentation errors can occur, and this can influence

the depth measurements within the ONH. This is primarily an issue for the top

retinal surface (surface 1). Another possible source of errors comes from the optic

disc reference standard of the OCT scan. When an color stereo photograph was

registered onto the OCT projection image, a similarity transformation using two

correspondence point pairs of the stereo color photograph and OCT projection image

was used. Higher-order transformations such as a quadratic model might improve

the registration accuracy [7]. Several additions to the basic graph search algorithm

as used in this work can be considered. The addition of regional information to

the edge-based cost function for the 3-D graph search could potentially increase the

segmentation accuracy [19, 20].

The average processing time of the complete method is 20 seconds. The segmen-

tation of three retinal surfaces using a multiscale 3-D graph search approach takes ap-

proximately 15 seconds, and the feature extraction, classification and post-processing

requires total 5 seconds. The method was implemented using C++ (Windows XP

Professional x64, Intel Core 2 Duo CPU @ 3.00 GHz, 4 GB of RAM). As the im-

plementation was not optimized for speed, additional speed improvements can be
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expected.

To summarize, we have presented a method for the segmentation of the optic

disc cup and neuroretinal rim from 3-D spectral OCT scans centered at the ONH.

The accuracy of the method is similar or significantly better than the inter-observer

variability.
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CHAPTER 5
SEGMENTATION OF THE RETINAL BLOOD VESSELS IN 3-D

ONH-CENTERED OCT SCANS

5.1 Methods

We developed an automated method that can segment 3-D retinal blood ves-

sels from ONH-centered OCT scans using a triangular mesh-based 3-D graph search

method. The method starts by detecting three retinal surfaces using a multiscale 3-D

graph search method (Fig. 5.1, Section 5.1.1). To have a consistent retinal shape

across scans and patients, and reduce eye movement artifacts, the original OCT vol-

ume and segmented retinal surfaces are flattened using surface 2 (Section 5.1.2). An

OCT projection image including high-contrast vessel shadows is created by averag-

ing in the z-direction the OCT subvolume between surfaces 2 and 3 (Section 5.1.4).

A vessel probability map is obtained by applying the supervised pixel classification-

based vessel segmentation method to the OCT projection image [33]. The thresholded

vessel probability map in which small regions are deleted gives the 2-D positions of

the retinal blood vessels. The triangular mesh of an initial 3-D vessel model is built

using the thresholded vessel probability map and surfaces 1 and 2. A 3-D graph is

constructed in which columns are resampled along the average normal directions of

surrounding triangles in the triangular mesh (Section 5.1.5). Finally, the 3-D retinal

blood vessels are detected by applying a triangular mesh-based 3-D graph search to

the cost function composed of gradient magnitudes of the isotropic OCT scan and

OCT projection image.

5.1.1 Segmentation of three retinal surfaces

This section is the same as Section 4.1.1 in Chapter 4.

5.1.2 Flattening of the retinal OCT volume

Spectral-domain ONH-centered OCT volumes have various retinal shapes depend-

ing on the eyeball shape, scan position and eye movements. Flattening of the OCT
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(a) (b)

(c)

Figure 5.1: Segmentation of three retinal surfaces in the spectral-domain ONH-
centered OCT volume. (a) X-Z image of the original OCT volume. (b) Image (a)
overlapped with the segmented retinal surfaces. (c) 3-D rendering of the segmented
retinal surfaces. Surface 1 is the upper surface of the GCL, surface 2 is the in-between
surface of the ICL and CL, and surface 3 is the lower surface of the RPE/BM.
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(a) (b)

(c)

(d)

Figure 5.2: Flattening of the retinal OCT volume. (a) Thin plate spline (yellow line)
fitted to surface 2 (green line) excluding the subsurface close to the center of the optic
disc cup. (b) X-Z image of the flattened OCT volume. (c) X-Z image of the flattened
OCT volume overlapped with the transformed retinal surfaces. (d) 3-D rendering of
the transformed retinal surfaces. Compared with Fig. 5.1(c), eye movement artifacts
existing in the y-axis were reduced.
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(a) (b)

Figure 5.3: 3-D graph structures. (a) Unfolded plane-based graph. (b) Triangle
mesh-based graph.

volumes is necessary to have a consistent retinal shape across scans and patients,

and suppress eye movement artifacts. A reference surface for flattening was created

by fitting a thin plate spline to surface 2 segmented in Section 5.1.1 excluding the

subsurface close to the center of the optic disc cup to preserve the shape of the optic

cup [19]. The center of the optic disc cup is the (x, y) location in which surface 1

has the lowest z-position. Based on the thin plate spline, the OCT volume was flat-

tened by adjusting A-scans in the z-direction up and down. In addition, the retinal

surfaces segmented in the original OCT volume were transformed into the flattened

OCT volume. Fig. 5.2 shows the OCT volume and retinal surfaces flattened from

the original OCT volume in Fig. 5.1.

5.1.3 Triangular mesh-based 3-D graph search

Compared with other segmentation methods such as level set methods [31,35,39],

active shape models [11] and active appearance models [10], a 3-D graph search
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approach has an advantage that it can detect an optimal surface with respect to

a cost function. However, it is difficult to directly apply a conventional unfolded

plane-based 3-D graph approach to the segmentation of 3-D retinal blood vessels

(Fig. 5.3(a)). There are two reasons. One reason is that the unfolded plane-based

graph search method requires the centerline of the retinal blood vessels to construct

a graph. It may be imperfect to automatically extract the centerline using the 3-D

thinning algorithm including the distance based-pruning process since information

about short branch vessels might be lost [34]. The other reason is that it is difficult

to construct a graph of bifurcations or crossovers of the retinal vessels. In order

to overcome the limitations of the unfolded plane-based 3-D graph, we developed a

triangle mesh-based 3-D graph search method in which columns were resampled using

tri-linear interpolation along the average normal directions of surrounding triangles at

the vertices of the surface of an initial vessel segmentation obtained by the marching

cube algorithm (Fig. 5.3(b)) [28]. The adjacencies of the columns had been known

from the triangle meshes of the initial vessel segmentation. The optimal vessel surface

was detected by computing the minimum s− t cut of the triangle mesh-based graph.

5.1.4 Triangular mesh generation of the initial 3-D retinal blood vessel model

The approximate retinal blood vessel model in 3-D was created using an OCT

projection image and prior knowledge about the depth of retinal blood vessels. The

x− and y−positions of the retinal blood vessels were identified in the OCT projec-

tion image which was created by averaging in the z-direction the OCT subvolume

between surfaces 2 and 3 segmented in Section 5.1.1 since the OCT projection image

included high-contrast vessel shadows (Fig. 5.4). The vessel probability map of the

OCT projection image was created using a supervised pixel classifier trained with

features from multiscale Gaussian filters [33]. A binary vessel image was obtained by

thresholding the vessel probability map. Additionally, using connected component

analysis, small regions were removed since they are more likely to background noise.
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(a) (b)

(c) (d)

Figure 5.4: 2-D binary segmentation of the retinal blood vessels. (a) OCT projection
image. (b) Vessel probability map. (c) Thresholded vessel probability map. (d) Fi-
nal 2-D segmentation result of the retinal blood vessels in which small regions were
deleted.
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(a) (b)

(c) (d)

Figure 5.5: Triangular mesh generation of the initial 3-D retinal blood vessel model.
(a) X-Z image of the isotropic OCT volume. (b) Image (a) overlapped with surfaces 1,
2 and the 2-D retinal blood vessel segmentation (yellow regions). (c) Approximate 3-
D segmentation result of the retinal blood vessels. (d) 3-D rendering of the triangular
mesh of the initial 3-D retinal blood vessel model.
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According to Leitgeb’s and Wehbe’s papers [29, 44], the z-positions of the retinal

blood vessels were identified in optical Doppler tomography (ODT) images that the

retinal blood vessels were located right above vessel shadows in the OCT image.

To detect isotropic retinal blood vessels, an isotropic OCT volume was created by

subsampling in the z-direction the flattened OCT volume in which the voxel size is

30 × 30 × 2 μm. Additionally, surfaces 1 and 2 in the flattened OCT volume in

Section 5.1.2 were transformed into the isotropic OCT volume. The z-positions of

the retinal blood vessels approximately corresponded to three middle voxels between

surfaces 1 and 2. The approximate 3-D retinal blood vessels were detected by finding

the intersection regions of the 2-D vessel segmentation and approximate z-positions

of the vessels (Fig. 5.5). The triangular mesh of the initial 3-D retinal blood vessel

model was built by applying the marching cube algorithm to the initial 3-D retinal

blood vessel segmentation. Finally, the triangular mesh was smoothed by averaging

adjacent vertices.

5.1.5 Final 3-D segmentation of the retinal blood vessels

Based on the initial 3-D retinal blood vessel model in Section 5.1.4, accurate 3-D

segmentation of the retinal blood vessels was performed using a triangular mesh-based

3-D graph search method [28]. Columns of the graph were resampled using tri-linear

interpolation along the average normal directions of surrounding triangles at the ver-

tices of the triangular mesh of the initial 3-D retinal blood vessel model. The cost

function for the graph search consisted of the inverted gradient magnitudes of the

isotropic OCT volume and OCT projection image (Fig. 5.6). The gradient magni-

tudes of the OCT projection image were used to improve the gradient magnitudes of

the sides of the retinal blood vessels. The optimal surfaces of the 3-D retinal blood

vessels were detected by computing the minimum s − t cut of the graph constructed

from the cost function with a low-order polynomial time complexity. Finally, the

surface of the segmented 3-D retinal blood vessel model was smoothed by averaging
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(a) (b)

(c) (d)

Figure 5.6: Cost function for the triangular mesh-based 3-D graph search.
(a) Isotropic OCT volume. (b) Gradient magnitudes of (a). (c) Gradient magnitudes
of the OCT projection image. (d) Final cost function which was inverted gradient
magnitudes combined of (b) and (c).
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adjacent vertices.

5.2 Experiments

5.2.1 Data

Thirty spectral-domain ONH-centered OCT scans were acquired from both the

eyes of 15 glaucoma patients at the University of Iowa using Cirrus HD-OCT (Carl

Zeiss Meditec, Inc., Dublin, CA, USA) machines. The dimension of each OCT

scan was 200 × 200 × 1024 voxels covering 6 × 6 × 2 mm3, the voxel size was

30 × 30 × 2 μm, and the voxel depth was 8 bits in grayscale. The acquisition time

of each OCT scan is 1.48 seconds. The Institutional Review Board of the University

of Iowa approved the research protocol.

5.2.2 Validation

To validate the presented our 3-D segmentation method of the retinal blood ves-

sels, our segmentation results were compared with markers which a retinal specialist

put at the center of the retinal blood vessels in 10 randomly selected X-Z images

for each isotropic OCT volume. Therefore, 300 X-Z images from 30 isotropic OCT

volumes were used for validation. The unsigned error was calculated by measuring

the closest Euclidean distance between a marker and all points of the centerline of

our segmentation. The centerline was obtained by applying the 3-D thinning algo-

rithm including the distance based-pruning process to the region surrounded by our

triangular mesh-based segmentation [34].

5.3 Results

The mean unsigned error in the X-Y plane on 30 isotropic ONH-centered OCT

scans was 1.326 ± 2.045 pixels (0.040 ± 0.061 mm), and that in the X-Y-Z plane was

3.375 ± 2.457 voxels (0.101 ± 0.074 mm). Figs. 5.7 and 5.8 show typical segmentation

results of the 3-D retinal blood vessels.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Segmentation results of the 3-D retinal blood vessels. (a) X-Z image of the
isotropic OCT volume corresponding to the top dotted line in Fig. 5.8. (b) X-Z image
of the isotropic OCT volume corresponding to the bottom dotted line in Fig. 5.8.
(c) Image (a) overlapped with our segmentation result. (d) Image (b) overlapped with
our segmentation result. (e) Image (a) overlapped with expert’s markers. (f) Image
(b) overlapped with expert’s markers.
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Figure 5.8: 3-D rendering of the retinal blood vessels segmented in Fig. 5.7.

5.4 Discussion

We have presented an automated 3-D segmentation method that can detect retinal

blood vessels from spectral-domain ONH-centered OCT scans. This method utilizes a

fast multiscale 3-D graph search to segment the retinal surfaces and a triangular mesh-

based 3-D graph search to detect the retinal blood vessels. In general the method

shows good performance. The average processing time of the reported method is 45

seconds (Windows XP Professional x64, Intel Core 2 Duo CPU @ 3.00 GHz, 4 GB

of RAM). The segmentation of three retinal surfaces takes approximately 40 seconds,

and the other processes including the retinal volume flattening, mesh generation of the

initial vessel model and final segmentation of the retinal blood vessels require total

5 seconds. As the implementation was not optimized for speed, additional speed

improvements can be expected.

From the mean unsigned errors in the X-Y and X-Y-Z planes reported in Section

5.3, the mean unsigned error in the z-axis was larger than those in the x− and
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y−axes. There are three main reasons of the unsigned errors. The first reason of the

unsigned errors comes from the mis-segmented retinal blood vessels (the leftmost and

rightmost vessels in Figs. 5.3(c) and (d), respectively). The second reason is caused by

the segmentation of the retinal surfaces. Especially the top retinal surface (surface

1) has a variety of shapes including the large variation around the ONH in the z-

direction. In addition, the segmentation results of the second and third retinal surface

(surfaces 2, 3) are not accurate around the ONH since these two surfaces are obscure

in the spectral-domain OCT scan as well as color fundus photographs. Therefore,

some research about 2-D retinal vessel segmentation excluded the region around the

ONH [18, 33]. Currently the edge-based cost functions for the 3-D graph searches

were used to detect the retinal blood vessels. The addition of regional information to

the cost functions could potentially increase the segmentation accuracy [19,20]. The

last reason comes from the 2-D binary segmentation of the retinal blood vessels in the

OCT projection image. In Fig. 5.3(g), several thin blood vessels are disconnected,

and some regions, which look like the retinal blood vessels, around the ONH are mis-

segmented. To get a binary vessel segmentation in this study, a simple thresholding

method was used. Piecewise thresholds obtained from local and global vessel features

could be useful to improve the binary vessel segmentation [22]. In addition, more

study on segmentation of the bifurcations and crossovers of the retinal vessels is

required.

In Section 5.2.2, although it is more reasonable to compare our segmentation

results with the vessel borders manually delineated by the retinal specialist, it is

difficult to identify the vessel borders in isotropic OCT volumes (see Figs. 5.3(a),

(b)). In the near future, more objective validation would be possible with optical

Doppler tomography (ODT) scans registered onto the OCT scans.
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CHAPTER 6
GENERAL DISCUSSION AND FUTURE DIRECTIONS

The methods developed for this thesis have a variety of potential applications. OCT

registration could be possible using retinal surface segmentations from spectral-domain

macular and ONH-centered OCT scans. In addition, more intraretinal layers in ONH-

centered OCT scans could be segmented using the same technique used for the in-

traretinal layer segmentation method of macular OCT scans. Therefore, a large OCT

volume including retinal surface segmentations could be obtained. Finally, an OCT

viewer program was developed to visualize segmentation results of the retinal surfaces,

optic disc and retinal blood vessels in the spectral-domain volumetric OCT scan.

6.1 Registration

OCT scanners such as Cirrus HD-OCT (Carl Zeiss Meditec, Inc., Dublin, CA,

USA) have a limited lateral field of view which covers 6 × 6 mm of the retina. In

order to get a larger view of the retina, OCT registration could be one solution. This

section introduces an OCT registration method using segmented retinal surfaces of

macular and ONH-centered OCT scans. The intraretinal layer thickness images of

macular and ONH-centered OCT scans are registered by a rigid transformation. To

calculate intraretinal layer thickness, the upper surface of the GCL and the lower

surface of the RPE/BM is used. The upper surface of the GCL represents the outer

surface of the retina, and the lower surface of the RPE/BM are used as a reference

surface. After layer thickness registration, two OCT volumes are flatted based on

the reference surface. Finally, these two OCT volumes are registered by a 3-D rigid

transformation. Fig. 6.2 shows the OCT registration result. For fine adjustment,

higher-order transformation could be applied to the registration result.
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(a) (b) (c)

Figure 6.1: Registration of the intraretinal layer thickness. (a) Layer thickness image
of the macular OCT scan. (b) Layer thickness image of the ONH-centered OCT scan.
(c) Registration result.

(a) (b) (c)

Figure 6.2: OCT registration result. (a) Flattened macular OCT scan. (b) Flattened
ONH-centered OCT scan. (c) Registration result.
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(a) (b)

Figure 6.3: Segmentation result of ten intraretinal layers in the ONH-centered OCT
scan. (a) X-Z image of the flattened ONH-centered OCT scan. (b) Image (a) over-
lapped with the segmented retinal surfaces. The segmentation result around the ONH
is not accurate since the intraretinal layers around the ONH are obscure.

6.2 Segmentation of ten intraretinal layers in ONH-centered OCT scans

The technique used for segmenting ten intraretinal layers in macular OCT scans

is applicable to ONH-centered OCT scans. Fig 6.3 shows the segmentation result

of ten intraretinal layers. Intraretinal layer segmentations in macular and ONH-

centered OCT scans could be used as the initialization for segmentation of symp-

tomatic exudate-associated derangements (SEADs) which are the abnormal dilation

of the intraretinal layer thickness caused by choroidal neovascularization (CNV) and

diabetic macular edema (DME) [19].

6.3 OCT viewer software

We developed an OCT viewer program to visualize cross-sectional images of the

OCT volume, retinal surfaces, OCT projection images, optic discs and retinal blood

vessels (Fig. 6.4). C++ was used for numerical calculation, and Microsoft foundation

classes (MFC) was utilized for displaying 2-D images such as the cross-sectional OCT
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Figure 6.4: OCT viewer software. 1) X-Z image of the OCT volume. The optic disc
cup is in red, and the neuroretinal rim is in green. The retinal surfaces are displayed
on the X-Z image with various colors. 2) Y-Z image of the OCT volume. 3) X-Y
image of the OCT volume. 4) OCT projection image. 5) 3-D rendering of the retinal
surfaces with blending effects and retinal blood vessels.
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images and OCT projection images. To visualize the retinal surfaces and blood vessels

in 3-D, OpenGL was used.
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CHAPTER 7
CONCLUSIONS

To summarize, first recall the specific aims for this thesis:

• Aim 1: Develop and validate a fast method that can automatically segment

eleven retinal surfaces for ten intraretinal layers in the spectral-domain macular

OCT scan.

• Aim 2: Develop and validate a shape-preserving method that can automatically

segment the optic disc cup and neuroretinal rim in the spectral-domain OCT

scan centered at the ONH.

• Aim 3: Develop and validate a method that can automatically segment the

3-D retinal blood vessels in the spectral-domain ONH-centered OCT scan.

Chapter 3 introduced a fast, accurate method which can automatically detect ten

intraretinal layers using a multiscale 3-D graph search (Aim 1). The main contri-

bution of the reported method is a fast processing performance by segmenting the

retinal surfaces in the small subvolumes of the spectral-domain OCT scan. Chapter 4

described a classification-based optic disc segmentation method in the ONH-centered

OCT scan using a multiscale 3-D graph search, contextual k -NN classifier and con-

vex hull-based post-processing (Aim 2). A 3-D retinal blood vessel segmentation

method from ONH-centered OCT scans using a triangular mesh-based 3-D graph

search method was presented in Chapter 5 (Aim 3). In addition, Chapter 6 intro-

duced potential future directions of these research.

In summary, this thesis has focused on the segmentations of the intraretinal layers,

optic disc and retinal blood vessels in the spectral-domain OCT scan. The developed

methods are expected to help analyze, diagnose and manage a variety of retinal

diseases.
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